Text Mining Lab
Training Rasa-Chatbots with Text
Project Report

David Fuhry
Leonard Haas
Lukas Gehrke

Lucas Schons
Jonas Wolff

Winter Term 2018/2019

Contents

[1 Project Description|
I1.1 Conversational Al and Tramning/

I1.3 Research Question|
[1.4 Project Goals|

[2__Data Processing|

2.1 ackage ‘'wikiproc’|o Lo
2.2 Data Acquisition| Lo L o

1 Project Description

1.1 Conversational AI and Training

Conversational Al describes computer systems that users can interact with by
having a conversation. One important goal is to make the conversation seem as
natural as possible. Ideally, an interaction with the bot should be indistinguish-
able from one with a human. This can make communication with a computer
become very pleasant and easy for humans as they are simply using their natural
language.

Conversational Al can be used in Voice Assistants that communicate through
spoken words or through chatbots that imitate a human by sending text mes-
sages.

1.2 Rasa Framework

Rasa is a collection of tools for conversational Al software. The Rasa Stack
consists of two open source libraries called Rasa NLU and Rasa Core that can
be used to create contextual chatbots.

A Rasa Bot needs training data to work properly.

1.3 Research Question

The objective of this project is to find out, whether chatbots can be trained with
natural language texts automatically. There are two initial research questions:

Can these facts be extracted from natural language text?
Can this be done automatically?

1.4 Project Goals

In regard to the given research questions, this project aims at implementing
procedures to extract information from natural language text and make that
information accessible to a chatbot.

1. Define possible intents fitting the given domain.
2. Configure a chatbot that recognizes these intents and linked entities.

3. Acquisition of data and implementation of processing that extracts re-
quired information.

4. The chatbot is given access to the extracted data to create answers to
given entities and intents.

Development of the bot is focused on proof of concept instead of production
ready conversation flow. Therefore the natural conversation abilities of the bot
will be limited.

2 Data Processing

2.1 R Package ’wikiproc’

All functionality to extract facts, download data from wikipedia as well as some
utility functions is encapsulated inside the wikiproc R package. This allows for
a better management of dependencies as well as inclusion of unit tests for fact
extraction methods.

’ Function \ Category ‘

clean html Utility

create _annotations | Utility

init_nlp Utility

get data Data scraping
get awards Fact extraction
get birthdate Fact extraction
get birthplace Fact extraction
get _spouse Fact extraction
get university Fact extraction

Table 1: Exported functions of the wikiproc package

2.2 Data Acquisition

Wikipedia was chosen as resource as it provides texts of relatively long length in
a somewhat uniform manner. While Wikipedia does have a Physicists categor
it is fragmented into somewhat arbitrary subcategories and thus not optimal to
use as a collection. However Wikipedia also has a List of physicistﬂ which
contains 981 physicists and was used to build the collection used.

Data scraping was done using the R Package WikipediR, a wrapper around
the Wikipedia API. Articles were downloaded as HTMIE| and afterwards stripped
of all HTML tags and quotation marks.

2.3 Fact Extraction

Fact extraction approaches greatly vary depending on the nature of the fact to
extract. As all approaches leverage on some form of NER or POS tagging, anno-
tations were created for all texts. This was done using the R Package cleanNLP
with a spaCy backend to create NER and POS tags, as well as lemmatization.

Fact extraction for physicists spouses was done using pre-defined patterns on
word lemmataﬂ A pattern consists of word lemmata to be matched (including
wildcards) as well as defined places to look for the name of the physicist and
his/her spouse. When a matching phrase is found the results are verified by
checking that the correct physicist is mentioned as well as the potential spouse
being detected as a person by the NER tagger.

Ihttps://en.wikipedia.org/wiki/Category:Physicists

%https://en.wikipedia.org/wiki/List_of_physicists

SHTML was chosen over wikitext to ease text cleaning

4Functionality to use patterns on POS tags is also available but did not yield a better
outcome.

https://en.wikipedia.org/wiki/Category:Physicists
https://en.wikipedia.org/wiki/List_of_physicists

A different approach is used for the detection of awards. The approach is
based on the assumption that the NER tagger will tag the awards as some kind
of entity. A set of keywords is the used to extract all entities of interest, the
awards.

3 Chatbot Architecture

The chatbot built for this project uses both Rasa Stack components - Rasa Core
and Rasa NLU. The Rasa NLU component takes care of getting user input and
matching it with the respective intents. The Rasa-Core component executes all
actions associated with the determined intent. Configuration has been organized
in reference to examples from the Rasa github repositoryﬂ

Rasa NLU has been trained with example questions in markdown format
that contain highlighted entities. This ensures that the bot is able to understand
intents and extract the entities inside the sentences. One example can be seen

in [l

intent:nationality
- what nation is [Albert Einstein] (physicist) from

— what nationality does [Albert Einstein](physicist) have
- where is [Galileo Galilei] (physicist) from

Figure 1: Example for intent 'nationality’

Rasa Core has been configured with stories that contain example conversa-
tion flows as training data, called stories 2] and the domain of the bot. The
domain contains all actions, entities, slots, intents, and templates the bot deals
with. Templates are pattern strings for bot utterances. Slots are variables that
can hold different values. The bot proposed in this project uses a slot to store
the name of a recognized physicist entity. According to the Rasa websiteﬂ the
domain is the universe the bot is living in.

nationality
* nationality{"physicist": "albert einstein"}

— action_search_nationality
— action_utter_nationality

Figure 2: Example for story associated with intent nationality

The bot recognizes the intents shown in table |2l It can be started by issuing
MAKE-commands. For further details, refer to the READMEﬂ

Shttps://github.com/RasaHQ/rasa_core/tree/master/examples

Shttps://rasa.com/docs/get_started_step2/

"https://git.informatik.uni-leipzig.de/text-mining-chatbot/wiki-rasa/blob/
master/README.md

https://github.com/RasaHQ/rasa_core/tree/master/examples
https://rasa.com/docs/get_started_step2/
https://git.informatik.uni-leipzig.de/text-mining-chatbot/wiki-rasa/blob/master/README.md
https://git.informatik.uni-leipzig.de/text-mining-chatbot/wiki-rasa/blob/master/README.md

No | Intent Example

1 | birthdate When was Albert Einstein born

2 | nationality Where was Albert Einstein born

3 | day of death When did Albert Einstein die

4 | place of death Where did Albert Einstein die

5 | is alive Is Albert Einstein still alive

6 | spouse Who was Albert Einstein married to

7 | primary education | Where did Albert Einstein go to school

8 | university Which university did Albert Einstein attend
9 | area of research What was Albert Einstein area of research
10 | workplace Where did Albert Einstein work

11 | awards What awards did Albert Einstein win

Table 2: Intents that are recognized by the bot

The data.tsv-File marks the center of the project architecture (Figure [3]) and
links the bot and the functionality in the wikiproc package. It is generated by
the wikiproc-Master script and contains processing results (intents in columns
and physicist entities in rows). The bot can iterate over the table with custom
actions and look for a result matching an intent and an entity.

4 A
RASA| [
| get_birthplace.R | | get_dataR |

Rasa
| get_awards.R | | nlp_annotate.R | o/ } NLU
-—-

=2)
get_birthdate.R R
Na J

Message out |)

l -
——
master.R —_—>| 1—»@—/
data.tsv J
R
\ AN J
Y Y

Preprocessing Usage

Figure 3: Overview of the Project Architecture

4 Results

Evaluating the Rasa framework we find an ambivalent result. On the one hand,
in the beginning of the project the setup and configuration of the bot led to
considerable problems because of outdated documentation. Therefore a lot of
time had to be spent on trial-and-error procedures to understand the function-
ality of the framework. On the other hand, the NLU functionality of the Rasa

stack has a high precision in recognizing intents expressed in the input, even far
beyond the provided training examples. It was possible to configure the bot to
meet our needs without any restrictions.

Wikipedia articles are particularly well suited for the process of information
extraction, because they generally are composed consistently. The different
levels of detail and therefore information were an issue when dealing in using
these articles.

Concluding the textmining part of our project we can assess that the func-
tions using mainly NER tags (get awards.R and get university.R) have high
recall and relatively low precision. The function get spouses.R, which is work-
ing with pattern matching, has low recall and high precision. It needs to be
emphasized that the quality the results is strongly dependent by the provided
data.

We were thus able to demonstrate that the extraction of facts about pre-
defined intents from text to be used by a chatbot is indeed possible. We did
not address here the automatic generation of new intents from text, which was
outside of the scope of this project, but would make for a logical continuation
of our work.

	Project Description
	Conversational AI and Training
	Rasa Framework
	Research Question
	Project Goals

	Data Processing
	R Package 'wikiproc'
	Data Acquisition
	Fact Extraction

	Chatbot Architecture
	Results

