library(ggplot2) # This assumes that the master script ran through and the result data frame is available feature_count <- sapply(results, function(col) sum(length(which(!is.na(col))))) feature_count <- data.frame(Count <- feature_count, Feature <- colnames(results), stringsAsFactors = FALSE) feature_count <- feature_count[feature_count$Count > 0 & feature_count$Feature != "name",] colnames(feature_count) <- c("Count", "Feature") # Flipped coord barplot p <- ggplot(feature_count, aes(x = reorder(Feature, Count), y = Count, fill = Feature)) p <- p + geom_bar(stat = "identity", width = 0.5) p <- p + geom_hline(aes(yintercept = 983), colour = "red") p <- p + coord_flip() p <- p + guides(fill = FALSE) p <- p + theme_minimal() p <- p + labs(x = "Feature") p ggsave("feature_count_flip.png", path = "plots", width = 4, height = 4, units = "in") # Normal barplot p <- ggplot(feature_count, aes(x = reorder(Feature, -Count), y = Count, fill = Feature)) p <- p + geom_bar(stat = "identity", width = 0.5) p <- p + geom_hline(aes(yintercept = 983), colour = "red") p <- p + theme_minimal() p <- p + theme(axis.text.x=element_blank()) p <- p + labs(x = "Feature") p ggsave("feature_count_normal.png", path = "plots", width = 4, height = 4, units = "in")