Newer
Older
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" # download loom files via api \n",
" \n",
"### see api documentation\n",
"[documentation](https://service.azul.data.humancellatlas.org/)"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import os\n",
"from tqdm import tqdm\n",
"import json\n",
"import pandas as pd\n",
"from tabulate import tabulate"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
"# example function, downloading a single file which was specified before \n",
"# modified! \n",
"# TODO make this function work. Add file name to output_pat (see example code)\n",
"\n",
"def download_file(index, output_path, files_list):\n",
" for i in index: \n",
"\n",
" url_tp = files_list[i]['url']\n",
" url = url_tp.replace('/fetch', '') # Work around https://github.com/DataBiosphere/azul/issues/2908\n",
" \n",
" response = requests.get(url, stream=True)\n",
" response.raise_for_status()\n",
" \n",
" total = int(response.headers.get('content-length', 0))\n",
" print(f'Downloading to: {output_path}', flush=True)\n",
" \n",
" with open(output_path, 'wb') as f:\n",
" with tqdm(total=total, unit='B', unit_scale=True, unit_divisor=1024) as bar:\n",
" for chunk in response.iter_content(chunk_size=1024):\n",
" size = f.write(chunk)\n",
" bar.update(size)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"project_uuid = '4a95101c-9ffc-4f30-a809-f04518a23803'\n",
"catalog = 'dcp26'\n",
"endpoint_url = f'https://service.azul.data.humancellatlas.org/index/projects/{project_uuid}'\n",
"\n",
"save_location = '/home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data'"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloads Complete.\n"
]
}
],
"source": [
"# example downoading of a project\n",
"\n",
"response = requests.get(endpoint_url, params={'catalog': catalog,})\n",
"response.raise_for_status()\n",
"response_json = response.json()\n",
"project = response_json['projects'][0]\n",
"\n",
"file_urls = set()\n",
"for key in ('matrices', 'contributedAnalyses'):\n",
" tree = project[key]\n",
" for path, file_info in iterate_matrices_tree(tree):\n",
" url = file_info['url']\n",
" if url not in file_urls:\n",
" dest_path = os.path.join(save_location, file_info['name'])\n",
" # TODO uncomment the folllowing line if you really want to download data: \n",
" # download_file(url, dest_path)\n",
" file_urls.add(url)\n",
"print('Downloads Complete.')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"# function gets meta data of loom files\n",
"# TODO make default params and abiltiy to passing params to the function\n",
"def get_files_metadata():\n",
" params = {\n",
" 'catalog': 'dcp26',\n",
" 'filters': '{\"fileFormat\": {\"is\": [\"loom\",\"loom.gz\"]}}',\n",
" 'size': 10,\n",
" 'sort': 'lastModifiedDate',\n",
" 'order': 'asc'\n",
" }\n",
" url = f'https://service.azul.data.humancellatlas.org/index/files'\n",
" response = requests.get(url, params=params)\n",
"\n",
" # Check the response status code\n",
" if response.status_code == 200:\n",
" # Request was successful\n",
" response_json = response.json()\n",
" return response_json\n",
" else:\n",
" # An error occurred\n",
" print(\"Error:\", response.status_code)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def get_file_list(response_json):\n",
" # extract file-information into a list of dicts\n",
" file_data = [] #list\n",
" for hit in response_json['hits']:\n",
" for file in hit['files']:\n",
" file_dict = {\n",
" 'fileName':file['name'],\n",
" 'size':file['size'],\n",
" 'version':file['version'],\n",
" 'projectShortname':hit['projects'][0]['projectShortname'][0],\n",
" 'projectId':hit['projects'][0]['projectId'][0],\n",
" 'entryId':hit['entryId'],\n",
" 'contentDescription':file['contentDescription'][0],\n",
" 'url':file['url']\n",
" }\n",
" file_data.append(file_dict)\n",
" file_data_with_index = [{\n",
" 'index': i,\n",
" **file_dict\n",
" } for i, file_dict in enumerate(file_data)]\n",
" return file_data_with_index\n",
"\n",
"def print_file_table(response_json):\n",
"\n",
" #file_data = get_file_list(response_json)\n",
" file_data = response_json\n",
" \n",
" # create nested list out of file_data\n",
" headers = [\"Index\", \"File Name\" , \"Size\", \"Version\", \"Project (shortname)\", \"ProjectID\", \n",
" \"EntryId\", \"Content Description\"]\n",
" table_data = [[\n",
" file['index'],\n",
" file['fileName'],\n",
" file['size'],\n",
" file['version'],\n",
" file['projectShortname'],\n",
" file['projectId'],\n",
" file['entryId'],\n",
" file['contentDescription'],\n",
" ] for file in file_data]\n",
"\n",
" table = tabulate(table_data, headers, tablefmt='fancy_grid')\n",
" print(table)\n"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"╒═════════╤═══════════════════════════════════════════╤════════════╤═════════════════════════════╤════════════════════════════╤══════════════════════════════════════╤══════════════════════════════════════╤═══════════════════════╕\n",
"│ Index │ File Name │ Size │ Version │ Project (shortname) │ ProjectID │ EntryId │ Content Description │\n",
"╞═════════╪═══════════════════════════════════════════╪════════════╪═════════════════════════════╪════════════════════════════╪══════════════════════════════════════╪══════════════════════════════════════╪═══════════════════════╡\n",
"│ 0 │ 098cc66a-d806-42db-a1c8-fa99a0317d7c.loom │ 854692581 │ 2021-02-03T19:43:20.000000Z │ HumanTissueTcellActivation │ 4a95101c-9ffc-4f30-a809-f04518a23803 │ 131ea511-25f7-5801-993f-bfa25f8ca68d │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 1 │ 294fe5d9-c1e8-4670-80d3-4c2b0a5e33c1.loom │ 1530326527 │ 2021-02-03T19:51:58.000000Z │ HumanTissueTcellActivation │ 4a95101c-9ffc-4f30-a809-f04518a23803 │ 7848d80b-6b1d-56b5-b19a-9639e3c4efbe │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 2 │ d6536459-ab4e-4954-a0ce-5e6d07670039.loom │ 938504115 │ 2021-02-03T19:44:43.000000Z │ HumanTissueTcellActivation │ 4a95101c-9ffc-4f30-a809-f04518a23803 │ b98cfaac-64f5-59f5-b42e-209186812c19 │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 3 │ a040dae6-e0b1-49cf-a9ee-9793d5ad7d9c.loom │ 1478984890 │ 2021-02-03T19:49:15.000000Z │ HumanTissueTcellActivation │ 4a95101c-9ffc-4f30-a809-f04518a23803 │ c7b6470c-e2f0-5141-a8a2-11eb0984689a │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 4 │ t-cell-activation-human-lung-10XV2.loom │ 395054566 │ 2021-02-10T18:04:33.000000Z │ HumanTissueTcellActivation │ 4a95101c-9ffc-4f30-a809-f04518a23803 │ d0b95f2c-98ae-582b-84f4-e2bd0c5a0adb │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 5 │ 0f14c412-5014-4ac0-9a71-858b2f047777.loom │ 423142737 │ 2021-02-04T15:18:49.000000Z │ KidneySingleCellAtlas │ abe1a013-af7a-45ed-8c26-f3793c24a1f4 │ 2b9f7c89-d1c2-53ef-a769-80fec2f7d9e6 │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 6 │ 37cad11b-c8c9-4d1f-b715-498b0f8d4b35.loom │ 1066947865 │ 2021-02-04T15:49:34.000000Z │ KidneySingleCellAtlas │ abe1a013-af7a-45ed-8c26-f3793c24a1f4 │ 32c69d68-1792-53af-9f42-0e97c9afc94b │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 7 │ dc31f31d-ab56-4025-9834-99be638a2d50.loom │ 745509487 │ 2021-02-04T15:34:25.000000Z │ KidneySingleCellAtlas │ abe1a013-af7a-45ed-8c26-f3793c24a1f4 │ 38a0ef48-9df1-5fef-8eb6-b32fbb67aabd │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 8 │ afd0ea55-e710-4b46-bb05-2423e491b6f5.loom │ 698042665 │ 2021-02-04T15:34:36.000000Z │ KidneySingleCellAtlas │ abe1a013-af7a-45ed-8c26-f3793c24a1f4 │ 3cd78fb7-b7bc-5ab1-b122-47585f0023d4 │ Count Matrix │\n",
"├─────────┼───────────────────────────────────────────┼────────────┼─────────────────────────────┼────────────────────────────┼──────────────────────────────────────┼──────────────────────────────────────┼───────────────────────┤\n",
"│ 9 │ b3ce1085-08dc-42ff-a609-6968315327a8.loom │ 425012253 │ 2021-02-04T15:30:01.000000Z │ KidneySingleCellAtlas │ abe1a013-af7a-45ed-8c26-f3793c24a1f4 │ 44175006-91f3-5d95-9a08-b33e08ed1ae3 │ Count Matrix │\n",
"╘═════════╧═══════════════════════════════════════════╧════════════╧═════════════════════════════╧════════════════════════════╧══════════════════════════════════════╧══════════════════════════════════════╧═══════════════════════╛\n",
"Downloading to: /home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data\n"
]
},
{
"ename": "IsADirectoryError",
"evalue": "[Errno 21] Is a directory: '/home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIsADirectoryError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[75], line 12\u001b[0m\n\u001b[1;32m 9\u001b[0m catalog \u001b[39m=\u001b[39m \u001b[39m'\u001b[39m\u001b[39mdcp26\u001b[39m\u001b[39m'\u001b[39m\n\u001b[1;32m 10\u001b[0m save_location \u001b[39m=\u001b[39m \u001b[39m'\u001b[39m\u001b[39m/home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data\u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m---> 12\u001b[0m download_file(index, save_location,files_list)\n",
"Cell \u001b[0;32mIn[68], line 16\u001b[0m, in \u001b[0;36mdownload_file\u001b[0;34m(index, output_path, files_list)\u001b[0m\n\u001b[1;32m 13\u001b[0m total \u001b[39m=\u001b[39m \u001b[39mint\u001b[39m(response\u001b[39m.\u001b[39mheaders\u001b[39m.\u001b[39mget(\u001b[39m'\u001b[39m\u001b[39mcontent-length\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m0\u001b[39m))\n\u001b[1;32m 14\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mDownloading to: \u001b[39m\u001b[39m{\u001b[39;00moutput_path\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m, flush\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m---> 16\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39;49m(output_path, \u001b[39m'\u001b[39;49m\u001b[39mwb\u001b[39;49m\u001b[39m'\u001b[39;49m) \u001b[39mas\u001b[39;00m f:\n\u001b[1;32m 17\u001b[0m \u001b[39mwith\u001b[39;00m tqdm(total\u001b[39m=\u001b[39mtotal, unit\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mB\u001b[39m\u001b[39m'\u001b[39m, unit_scale\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, unit_divisor\u001b[39m=\u001b[39m\u001b[39m1024\u001b[39m) \u001b[39mas\u001b[39;00m bar:\n\u001b[1;32m 18\u001b[0m \u001b[39mfor\u001b[39;00m chunk \u001b[39min\u001b[39;00m response\u001b[39m.\u001b[39miter_content(chunk_size\u001b[39m=\u001b[39m\u001b[39m1024\u001b[39m):\n",
"File \u001b[0;32m~/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.py:284\u001b[0m, in \u001b[0;36m_modified_open\u001b[0;34m(file, *args, **kwargs)\u001b[0m\n\u001b[1;32m 277\u001b[0m \u001b[39mif\u001b[39;00m file \u001b[39min\u001b[39;00m {\u001b[39m0\u001b[39m, \u001b[39m1\u001b[39m, \u001b[39m2\u001b[39m}:\n\u001b[1;32m 278\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 279\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mIPython won\u001b[39m\u001b[39m'\u001b[39m\u001b[39mt let you open fd=\u001b[39m\u001b[39m{\u001b[39;00mfile\u001b[39m}\u001b[39;00m\u001b[39m by default \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 280\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mas it is likely to crash IPython. If you know what you are doing, \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 281\u001b[0m \u001b[39m\"\u001b[39m\u001b[39myou can use builtins\u001b[39m\u001b[39m'\u001b[39m\u001b[39m open.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 282\u001b[0m )\n\u001b[0;32m--> 284\u001b[0m \u001b[39mreturn\u001b[39;00m io_open(file, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
"\u001b[0;31mIsADirectoryError\u001b[0m: [Errno 21] Is a directory: '/home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data'"
]
}
],
"source": [
"# example workflow\n",
"# get file metadata \n",
"antwort = get_files_metadata()\n",
"# transform & print it as list\n",
"files_list = get_file_list(antwort)\n",
"print_file_table(files_list)\n",
"# specifiy which file(s) you want to download (provide index-list)\n",
"index = [6]\n",
"catalog = 'dcp26'\n",
"save_location = '/home/fran/Documents/AAMasterDataScience/BigDataPraktikum/data'\n",
"\n",
"download_file(index, save_location,files_list)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Weiterführende Notizen\n",
"\n",
"https://www.askpython.com/python/examples/pull-data-from-an-api"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Loom Dateien: \n",
"\n",
"Umgang mit LoomPy: \n",
"\n",
"https://linnarssonlab.org/loompy/apiwalkthrough/index.html"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}