Changes
Page history
Update Usage
authored
Jan 09, 2023
by
Florian Grosse
Show whitespace changes
Inline
Side-by-side
Usage.md
View page @
1c5a6c26
## Package Installation
Install any packages you want to use. For our example, switch to the package manager with
`\]`
and run:
Install any packages you want to use. For our example, switch to the package manager with
`]`
and run:
```
julia
add
LowRankModels
add
DecisionTree
```
## Quickstart
Congratulations! As an example, run:
```
julia
...
...
@@ -23,6 +26,7 @@ Z = Vector{String}()
data
=
Vector
{
Vector
{
Float64
}}()
# separate data from metadata columns
# change this as appropriate for your data or generate some dummy data
for
rline
in
readlines
(
toy
)
line
=
split
(
rline
,
','
)
push!
(
T
,
parse
(
Int
,
line
[
353
]))
...
...
@@ -36,21 +40,42 @@ block = ConML.VMS{Float64}(T, Sigma, Z, data)
# set parameters
# we have to specify values for which no defaults exist
par
=
ConML
.
ParametersConML
(
LearnBlockMinimum
=
1
,
maxCategories
=
10
,
MinCategorySize
=
20
,
maxFilterFeatures
=
1000
,
maxFilterSamples
=
2000
)
par
=
ConML
.
ParametersConML
(
LearnBlockMinimum
=
1
,
MinCategorySize
=
20
,
maxFilterFeatures
=
1000
,
maxFilterSamples
=
2000
)
# create empty knowledge base
kb
=
ConML
.
KnowledgeBase
{
Int
}(
ConML
.
VMS
{
Int
}(),
Vector
{
ConML
.
MachineModel
}()
)
kb
=
ConML
.
KnowledgeBase
(
)
# create steps for the algorithm
myConstruction
=
ConML
.
Construct
([
LowRankModels
.
KMeans
(
k
=
2
),
LowRankModels
.
KMeans
(
k
=
3
),
LowRankModels
.
KMeans
(
k
=
4
)
])
myConstruction
=
ConML
.
Construct
([
LowRankModels
.
KMeans
(
k
=
k
)
for
k
in
2
:
4
])
myReconstruction
=
ConML
.
Reconstruct
([
DecisionTree
.
DecisionTreeClassifier
(
max_depth
=
2
),
DecisionTree
.
AdaBoostStumpClassifier
(
n_iterations
=
10
)])
featureSelection
=
ConML
.
FeatureSelector
()
# Skip feature selection for now, see ConMLDefaults for default feature selectors
featureSelection
=
nothing
# make a pipeline
learn
=
ConML
.
LearnerConML
(
kb
,
par
,
[
ConML
.
searchLearnBlocks
,
myConstruction
,
featureSelection
,
myReconstruction
]
)
learn
=
ConML
.
LearnerConML
(
kb
,
par
,
myConstruction
,
featureSelection
,
myReconstruction
;
skipLearnblockSearch
=
false
)
# feed it!
learn
(
block
)
```
## Update
Navigate to the project folder and run
`git pull`
. Afterwards, go to the julia package manager (
`\]`
) and run
`update`
.
\ No newline at end of file
Navigate to the project folder and run
`git pull`
. Afterwards, go to the julia package manager (
`]`
) and run
`update`
.
## Help
To see how something works, enter help mode with
`?`
and type the name of the object you want to know about, e.g.:
```
julia
help
?>
Reconstruct
Reconstruct
(
estimators
,
names
;
winnerselection
=
select_best_or_none
)
Reconstruct
(
pairs
(
estimator
,
name
))
Reconstruct
(
pairs
(
name
,
estimator
))
Reconstruct
(
dictionary
(
estimator
,
name
))
Reconstruct
(
dictionary
(
name
,
estimator
))
Create
a
callable
object
for
Reconstruction
.
Estimators
must
be
subtypes
of
scikit
-
learn
BaseEstimator
and
implement
the
scikit
-
learn
API
for
supervised
methods
(
namely
,
fit!
(
method
,
Xs
,
Ys
)
and
predict
(
method
,
Xs
)
are
expected
)
.
...
```
If something is still lacking in documentation, take a look at the source code or send us an email.
\ No newline at end of file