Newer
Older
from abc import abstractmethod, ABC
import pandas as pd
class Adapter(ABC):
@abstractmethod
def read_csv(self): pass
@abstractmethod
def sort(self, *args, **kwargs): pass
@abstractmethod
def set_column_value(self, *args, **kwargs): pass
@abstractmethod
def set_column_values(self, *args, **kwargs): pass
@abstractmethod
def get_column_name_by_index(self, *args, **kwargs): pass
@abstractmethod
def get_column_index_by_index(self, *args, **kwargs): pass
@abstractmethod
def get_columns(self, *args, **kwargs): pass
@abstractmethod
def drop_colunn_by_name(self, *args, **kwargs): pass
@abstractmethod
def get_column_values_as_list(self, *args, **kwargs): pass
@abstractmethod
def get_block(self, *args, **kwargs): pass
# TODO (dmt): Provide common base class or pandas operations.
class PandasBlock:
_LAST_THREE_COLUMNS = 3
def __init__(self, data_block, relatives=None):
self.__data_block = data_block
def __str__(self):
return str(self.__data_block)
def __getitem__(self, item):
return self.__data_block.iloc[item][:self.rows-self._LAST_THREE_COLUMNS]
def __len__(self):
return self.__data_block.shape[0]
def set_labels(self, labels):
data_frame = self.__data_block["Z"] = labels
return PandasBlock(data_frame, self.relatives)
@property
def rows(self):
return self.__data_block.shape[1]
def new_block_from(self, column_values):
data_from = self.__data_block.loc[self.__data_block["T"].isin(
column_values)]
return PandasBlock(data_from)
def get_duplicated_pairs(self, *args):
bool_series = self.__data_block.duplicated(subset=[args[0], args[1]])
duplicates = self.__data_block[bool_series]
for i, j in zip(duplicates[args[0]], duplicates[args[1]]):
yield i, j
@property
def indexes(self):
return tuple(self.__data_block.index)
def get_values(self, **kwargs):
t, z, sigma = kwargs.get("T"), kwargs.get("Z"), kwargs.get("Sigma")
if t is not None and z is not None:
data_frame = self.__data_block.loc[
(self.__data_block["T"] == t) & (self.__data_block["Z"] == z)]
elif t is not None and sigma is not None:
data_frame = self.__data_block.loc[
(self.__data_block["T"] == t) & (
self.__data_block["Sigma"] == sigma)]
elif z is not None and sigma is not None:
data_frame = self.__data_block.loc[
(self.__data_block["Z"] == z) & (
self.__data_block["Sigma"] == sigma)]
else:
# TODO (dmt): Write proper error handling.
raise Exception()
return PandasBlock(data_frame)
@property
def length(self):
return self.__data_block.shape[0]
def drop_row(self, index):
self.__data_block.drop(index, inplace=True)
def get_column_values(self, column_name):
return self.__data_block[column_name]
class PandasAdapter:
def __init__(self, data_frame):
self.__data_frame = data_frame
@classmethod
def read_csv_data(cls, path):
data_frame = pd.read_csv(path)
return PandasAdapter(data_frame)
return self.__data_frame.shape[0]
def get_block_via_index(self, indexes):
return PandasBlock(self.__data_frame.iloc[indexes])
def get_block(self, start, end=None, step=None):
return PandasBlock(self.__data_frame[start:end:step])
def get_column_values(self, column_name):
return self.__data_frame[column_name]
def get_column_values_as_list(self, column_name):
return self.__data_frame[column_name].tolist()
def get_columns(self):
return list(self.__data_frame.columns)
def drop_column_by_index(self, index):
column = self.get_column_name_by_index(index)
self.__data_frame.drop(columns=[column], inplace=True)
def drop_column_by_name(self, name):
self.__data_frame.drop(columns=[name], inplace=True)
def get_column_index_by_name(self, name):
return self.__data_frame.columns.get_loc(name)
def get_column_name_by_index(self, index):
column_names = self.__data_frame.columns
return column_names[index]
def set_column_value(self, column_name, value):
self.__data_frame[column_name] = value
def sort(self, column_name, ascending=True):
self.__data_frame.sort_values(by=[column_name],
ascending=ascending,
inplace=True)
def set_column_values(self, column, values):
self.__data_frame[column] = values