Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Leipzig Machine Learning Group
conML
python
Commits
12386647
"...cwa-app-android.git" did not exist on "a5630bed85c2f20cb81bf43a3a3ce3568876c05f"
Commit
12386647
authored
5 years ago
by
dmt
Browse files
Options
Downloads
Patches
Plain Diff
Define adapters for machine learning models used in reconstruction.
parent
8a909a9f
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
cml/ports/ml_adapter.py
+46
-2
46 additions, 2 deletions
cml/ports/ml_adapter.py
with
46 additions
and
2 deletions
cml/ports/ml_adapter.py
+
46
−
2
View file @
12386647
from
collections
import
Counter
from
collections
import
Counter
from
abc
import
ABCMeta
,
abstractmethod
from
abc
import
abstractmethod
from
numpy
import
array
,
linspace
,
less
,
greater
,
std
,
argsort
from
numpy
import
array
,
linspace
,
less
,
greater
,
std
,
argsort
from
scipy.signal
import
argrelextrema
from
scipy.signal
import
argrelextrema
import
sklearn.cluster
import
sklearn.cluster
from
sklearn.neighbors.kde
import
KernelDensity
from
sklearn.neighbors.kde
import
KernelDensity
from
sklearn.metrics
import
max_error
,
mean_absolute_error
from
keras.layers
import
Input
,
Dense
from
keras.layers
import
Input
,
Dense
from
keras.models
import
Model
from
keras.models
import
Model
from
keras.regularizers
import
l1
from
keras.regularizers
import
l1
...
@@ -94,6 +95,49 @@ class ConstructionClusteringMLModel(MachineLearningModel):
...
@@ -94,6 +95,49 @@ class ConstructionClusteringMLModel(MachineLearningModel):
return
self
return
self
class
ReconstructionConceptualMLModel
(
MachineLearningModel
):
def
__init__
(
self
,
model
):
self
.
__model
=
model
self
.
accuracy
=
None
def
train
(
self
,
data
,
*
args
,
**
kwargs
):
# TODO (dmt): Improve signature of this function!
labels
=
args
[
0
]
self
.
__model
=
self
.
__model
.
fit
(
data
,
labels
)
self
.
accuracy
=
self
.
__model
.
score
(
data
,
labels
)
return
self
def
predict
(
self
,
data
):
return
[
i
for
i
in
self
.
__model
.
predict
(
data
)]
class
ReconstructionProceduralMLModel
(
MachineLearningModel
):
def
__init__
(
self
,
model
):
self
.
__model
=
model
self
.
mean_error
=
None
self
.
max_error
=
None
def
train
(
self
,
data
,
*
args
,
**
kwargs
):
# TODO (dmt): Provide a better way dealing with
# zero values as max_abs_label!
labels
=
args
[
0
]
self
.
__model
=
self
.
__model
.
fit
(
data
,
labels
)
relative_max_error
=
max_error
(
y_true
=
labels
,
y_pred
=
self
.
__model
.
predict
(
data
))
max_abs_label
=
max
((
abs
(
i
)
for
i
in
labels
))
if
max_abs_label
==
0
:
raise
ValueError
()
self
.
max_error
=
(
relative_max_error
*
100
)
/
max_abs_label
relative_mean_error
=
mean_absolute_error
(
y_true
=
labels
,
y_pred
=
self
.
__model
.
predict
(
data
))
self
.
mean_error
=
(
relative_mean_error
*
100
)
/
max_abs_label
return
self
def
predict
(
self
,
data
):
return
[
i
for
i
in
self
.
__model
.
predict
(
data
)]
class
KernelDensityEstimator
(
MachineLearningModel
):
class
KernelDensityEstimator
(
MachineLearningModel
):
def
__init__
(
self
,
kernel
=
"
gaussian
"
,
bandwidth
=
3
,
gridsize
=
256
):
def
__init__
(
self
,
kernel
=
"
gaussian
"
,
bandwidth
=
3
,
gridsize
=
256
):
...
@@ -107,8 +151,8 @@ class KernelDensityEstimator(MachineLearningModel):
...
@@ -107,8 +151,8 @@ class KernelDensityEstimator(MachineLearningModel):
if
not
self
.
__model
:
if
not
self
.
__model
:
self
.
__model
=
KernelDensity
(
kernel
=
self
.
kernel
,
self
.
__model
=
KernelDensity
(
kernel
=
self
.
kernel
,
bandwidth
=
self
.
bandwidth
)
bandwidth
=
self
.
bandwidth
)
self
.
__model
.
fit
(
reshaped_data
)
self
.
__model
.
fit
(
reshaped_data
)
return
self
return
self
def
density
(
self
):
def
density
(
self
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment